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ON SOLVABILITY OF AN EQUATION
ARISING IN THE THEORY OF M-ESTIMATES*

Z. D. Bai, X. R. Chen,

B. Q. Miao and Y. H. Wu

ABSTRACT

This article, by obtaining the limit of probability that some equa-
tion arising in a case of M-estimate possesses at least one solution,
establishes the fact that even in the simplest case, when the function p
is not differentiable at least at one point, it is not legitimate to con-

vert the minimization problem

t . - >
p(Yi- 51@). = min

nes133

i=1

defining the M-estimate to the solution of equations Z?zlp‘(Y

AMS 1980 Subject Classifications: Primary 62J05.
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1. INTRODUCTION
Consider a standard linear form
Y. = x!g, +te., i=1,...,n,... (1.1)
where {51} is a sequence of known p-vectors, p > 1, {ei} is a sequence of

random errors. The M-estimate (Huber (1964, 1973)) én of Bg is defiped

as a solution of the minimization problem

p(Y, - xig): = min (1.2)

e~

i=1

p is a chosen function on R]. When p is convex and p' exists everywhere
on R], (1.1) can be rewritten as the problem of solving the system of

equations:
n
Lot (Y- xig)x; = 0. (1.3)

Some authors obtain asymptotic properties of M-estimates via this approach.
See Yohai and Maronna (1979), Maronna and Yohai (1981), Huber (1973), among

others.

When o is not convex, but p' exists everywhere, the solution of (1.2)

must still be a solution of (1.3). Therefore, if it can be shown that some

asymptotic property is possessed by all solutions of (1.3), then this

property is also possessed by the solution of (1.2). Only in such circum-

stances one has the right to assert that the problem (1.2) can be converted

to (1.3).

However, in many cases of practical significance, p is not differen-

tiable somewhere. A famous example is p(u) = |u|, leading to the much- ity (atee
v N
N FEAY DAY

Lrecisl -"5-"

studied Minimum L]-Norm estimate. In such cases one may still wrigg gown
S
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-------------
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the equation (1.3) formally, ignoring for the moment the fact that p'(u) ]
is not defined for some u. To justify such an approach, one has to make ?.;
sure the following two points: ﬁ?
1) That the probability of the event {(1.3) has a solution} tends ' i:t
to one as n » =, . 3
2) That the probability of the event {The solution mentioned in 1) ;%f
is a solution of (1.2)} tends to one as n > =, ;i:
Since it is difficult to study the M-estimate directly resorting to ':
the minimization (1.2), it makes good sense to give a closer look into the :rg
problem: Whether or not it is possible to validate this approach in a E'
reasonably general framework? The present article solves this problem .E
in the negative. .
This work is stimulated by a paper of Dodge and Jureckova (1987), who f
studied the M-estimate defined by the function p(u) = s|u] + (1- 6)u2
(0 < 6 <1). This function is not differentiable at u = 0, unless ¢ = 0.
But they used (1.3) to replace the minimization problem (1.2) without
clarifying the two points mentioned above. We shall show that even in
the simplest special case of estimating a location parameter, their
approach is invalid, to say nothing about the general case. Our result
shows that to obtain rigorous results of M-estimate when p is not every-
where differentiable, one must pay due attention to the original minimi-
zation problem (1.2). See, for example, Chen and Wu (1987). 2:

e
vy
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2. FORMULATION OF THE THEOREM K,

Consider a special case of (1.1) in which B, is one-dimensional, N

Xp = Xy = .. S 1. The problem becomes one of estimating the location i'
parameter. Since p(u) = s|u| + (1- 6)u2, on writing By = @ the equation 4
(1.3) assumes the form | h
n n -

G.Z sgn(Yi-a) + 2(1 —5).2 (Yi -a) =0 (2.1) 3

i=1 i=] }

where sgn(0) = 0, sgn(u) = u/|u| for u # 0. Define ™
E, = the event {(2.1) has at least one solution}, Py = P(En). (2.2) i;

L

We have the following theorem: %
&

THEOREM. Suppose that Y], Y2, ... are independent and identically Li

}
distributed (i.i.d.) random variables with a finite variance and a common .
L

density function f. Denote by ¢ the unique solution of the minimization 7S

problem for 0 < 6 < 1:

2

Q(a) 6E|Yi—a| + (1 -G)E(Y]-a) : = min. (2.3)

Suppose that f is continuous and positive at c. Then

lim p = (1-6)/(1 - 6+ 5f(c)) (2.4)

which is less than one for ¢ € (0,1), and can be arbitrarily small when

f(c) is large, or s is close to 1.

i

- - - a2 - - C . - - Y - - - -h s . .I - L] - T .. .l .'I
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A 3. A CRUDE RESULT
5{ We shall give the proof of the Theorem in Section 4. Since the

¥
)
s proof is quite devious, for readers who are not interested in the specific
o
)
_ﬁf value of Tim P We offer in this section a simple and elementary proof

\ of a less-accurate result, from which, nevertheless, follows the invalidity
; of the approach of Dodge and Jureckova (1987): Suppose that Y1, Y2,
6y . are i.i.d. variables with a common rectangular distribution R(0,1)

v and § = 2/3, then we have

lim inf(1-p_) > 0. (3.1)

f N n

EE For a proof, denote by En] < €n2 < L.l < Enn the order statistics of
n Y15 -..s Y, and hitherto we shall abbreviate £ . to £.. Write
[ n ni i
‘e
s [n/2+/n] :

3 W= ) £./[n/2+/n], n_ = €:s

= n =1 " g=[n/2% /)41 T
ﬁ:
{: where [b] denotes the integer part of b. Remembering § = 2/3, rewrite
) (2.1) as

. n n

: Z sgn(é;i-a) + z (Ei'a) = 0. (32}
o i=1 i=1

"y

¥ Write L,; and L, for the intervals (1/2-2/vn, 1/2] and [1/2, 1/2+2//n]
;% respectively, and define the events

:l _ )

" A] = A]n - {E[n/Z- /n] € Ln]}’
2 A2 = Pon = Lerns2+ /a1 € L2t

' B =8, =W eler o4 my/2- VM g0, m7/ 241/

g Note that when A2 N B occurs, WoelL ss (174 -1//n, 1/4+2//n].

E Denoting by ¢ the distribution function of N(0,1) and noticing the fact
V]

"_
¥
)
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that the conditional distribution of [n/2+/n]v~ln given E[n/2+/ﬁ] is the ;’:,

- .. . . ]

same as E[n/2+/ﬁ] plus the sum of [n/2+v/n] - 1 i.i.d. variables with a \
common distribution R(O, E[n/2+/ﬁ])’ it is easy to see that -»"
%

. . . .

Tim inf P(A, N A,NB) > Tim(P(A)) +P(A,) +P(B) - 2)

N0 N0

v
= 3[e(2) -e(-2)) - 2 = q > 0. (3.3) 7

e

Now we proceed to show that there exists constant r > 0 such that b

v

when n is sufficiently large t}-
N

- - - = e

P, [Etn/2+ /A1 " Yne Eln/2- vl ™ Ve W) 20 (3.4) NG

L

holds uniformly for u, € an, vV, € Ln] and W€ Ln3' For this purpose a,
write ¢, =N - [n/2 +/n]. Under the above given conditions, the conditional
distribution of n_ is the same as the sum of ¢, 1.1.d. variables with a b
common distribution R(un,l). Since 1 - u > 1/3, when u €L 5, by elemen- A
tary calculus, or employing local 1imit theorem (see Petrov {1975)), it
can easily be shown that the conditional density f(t,un) of i
- 23 S ~ "3

Q, = 2/3(1—un) /ql (nn-(]+un)cn/2) (3.5) ~
l‘\‘

A
tends uniformly to Vel exp(-t2/2) for u e L , and t bounded. D .
Since [n/2+»/'n]wn + = 6y oot g, an inspection of the equation r
(3.2) reveals that when wn held fixed, each real a corresponds one and only \__
one value nn(a) such that when n, assumes the value nn(a), (3.2) will have L3
N

Fd
solution a. Evidently nn(a) increases linearly with a as long as a stays -_;3'_
A

within (£, £;,9) for some i, and n (a) has a jump of magnitude 2 at a = ¢.. P
V)

- ]

As a runs from 5[n/2- /il to E[n/2 + /i]® a passes at least 2/n - 3 such
s

gi's. Hence there exist at least 2/n - 3 intervals, each with length 2, ";
L

’

N

MOl o R I

4 %
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and any two of them are disjoint, Such that if n falls into one of these
intervals but not equal to the midpoint of this interval, (3.2) has no
solution. Denote by Dn the union of these intervals. It is easy to

see that

Dnc [3n/8-21/n/4 -3, 3n/8+17/n/4] (3.6)

when u_ € L

n n2* Vp € Lyp and e Ln3' In fact, from equation (3.2) it is ;

seen that when Ups Vs wn satisfy these conditions, each point in Dn must
not be less than
n

(na= (n/2+ /A, - o9& - ) a=1/2-2/¥, w =1/4+2//

= n(1/2-2//n) - (n/2+/n)(1/4+2//n) - (n-2[n/2-/n]+1)
> 3n/8 - 21/n/4 - 3.

The other end is similar. From (3.5), (3.6) and the fact that u €L,
it is easy to see that n € D entai]s'|0n| < 50 + o(1). Denote by |B]
the Lebesgue measure of a set B. We have seen that |Dn| > 4/n - 6. Hence
by (3.5) and u €L o, we have ]{Qn: N, € Dn}l > 38 + o(1). These facts,
and the fact that f(un,t) converges uniformly to /?%'4 exp(-t2/2), enable
us to infer that when n is sufficiently jarge,

2

The left-hand side of (3.4) > 2“/2?:'% et /24t -
31<|t] <50

1
-

uniformly for u €Ll ,, v €L, woel s This proves (3.4). Now (3.3)

n n

and (3.4) together give

1 - Pn >rq/2>0

for n large, and (3.1) is proved.
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L 4. PROOF OF THE THEOREM o
¥ The following lemma will be needed in the proof. :
- ;
- LEMMA 1. Suppose that we have a triangular array of random variables E
. X0 T<icm., n>1}, such that '1112 m. = « and for each n, X ;5 ..+ Xnmn
. _ ? _ .
o are independent. Suppose that EX . =0, 0 < o = var(Xm.) <o, Todiam,
4 n>1. HWrite ]
m m -
] 02 = Zn 02- X = an F (x) = P(X_ <o _x) .
n .L.oni? n .Lo"ni? n n—n
i=1 i=1 !
and assume that the following conditions are satisfied:
a. There exist constants 4, > 0, By > 0, such that
- A<02<A for 1 <i<m n > 1 g
3 1="ni =72° - ="n = '
b. There exist positive constants Ci» Cos oo tending to 0, such that ‘
sup sup sup I'f".(t)+021.l <c, m>1, K
[t]<1/m n>1 1<i<m n m :
where fni is the characteristic function of Xm" -
2 c. There exists a positive function g = g{a,b) defined on the set :
. {(a,b): 0< a< b}, such that "
A sup | f i (t)] < exp(-g(a,b)), for 1 <i<m, n>T
> ac]t|<b A
- - - .
“m t
3 Then we have ¥
/ - t
|'sup ](Fn(xw‘h) - Fn(X)> - <<I>(x+h) - @(x))] = o(h+n ]).
X| <o 9
Here o(h+/r-1_]) depends only upcn A], bos {cm}, and the function g.
Stone (1965) proved this lemma in the special case that :
= = )" . . . }
m.o= N, Xm. Xi’ Xy X2, ... are i.i.d, variables. 3
J) N
His method of proof can be adopted here with some minor modifications, so N
“
w
\}\:f\:r";-":r';"‘:r':';"' :, ‘




the details are omitted.

E Now turn to the proof of the theorem. Denote by u, m and 02 the
! expectation, median and variance of Y] respectively. Without loss of
generality, assume that ¢ = 0 (see (2.4)). Since ¢ must lie between v
and m, without loss of generality assume that v < 0 <m. Denote by F the
distribution function of Y], and g = F(0), we have 0 < g < 1/2. Since 0

is the minimization point of Q(a), we easily verify that

f w = -2(1-2q) <x=a/(2(1 -5))). (4.1)

N Denote, as in Section 3, by a] < ... < En the order statistics of Y], cees
i) Yn. Evidently, if (2.1) has a solution &n, there must be some j such that

7 A

E: Ej <4, < £j+1' (4.2)

Since F is a continuous distribution, it is easy to verify that P(&n = gj

for some j) = 0, and (4.2) may be replaced by

£, < a (4.3)

J n < €j+1'

Considering the equation (2.1), (4.3) is equivalent to

AN

n
£, < Yn +A(n-23)/n < E.41 Y = Z

Y./n. 4.4
; ] n ;/n (4.4)

1

N -" :' :‘;'J- '

Writing pnj = P(gj <Yn-+x(n -23)/n <5j+1)’ j=0,1,...,n, with the convention

. -'. .\

that Eg = "™ €n+1 = =, we have

Pn = Pno * Pm et Pan- (4.5)

Now fix M > 0, and write j; = j;, = [gn - M/n], Jo = dpy = [an + M/n]

(q = F(O)). We verify easily that: If Ej > 0, IVB-UI < 2M/V/n, then ]
2

o’
O R N e S N I I L I TN AP SR I . RO LT A L)
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(4.4) does not hold for j > j,. Similarily, if ¢; <0, |V -ul <M/,
1

(4.4) does not hold for j < j]. Hence
j]‘]

P i_P(IYE -ul >AM/Vn) + P(£j1.10) + P(gj <0). (4.6)

n
) <
3—12+1 2

From (4.6), it follows easily that

j]’]
Tim 1im sup(.i

n
+ ] p)=0 (4.7)
Moo n-e Jj=

P
1M e

For any integer j € [j],jz] and x < y, define

Pnj(x,y) = P(x< Y +x(n- zj)/n<;y|5j =X £y y>.

Since the conditional distribution of Vh given gj = X, gj+] = y is the same
as the distribution of (x-Fy-+;]'+...-+;j_] +r” +... +nn_j_l)/n, where
Tys seeayiqs Nyseeeanp g ATE independent, z,, ceesLyp Are i.i.d. with
a common density I(_oo X)(-)f(-)/F(x) with expectation Mg and variance O?x’
s eees Mg are i.i.d. with a cozmon density I(y,m)(-)f(o)/[l- Fly)]
with expectation Moy and variance Ooy on writing

j'] n-"] 2 2 2
we have

R, £, N0,1), as ns e (4.8)

Now apply Lemma 1, putting {an’ ...,Xnmn} = {a], ""Cj—]’ Nys oo
nn-j-l}’ where S PO R P u2y' Since Y] possesses a density
function f, f(0) > 0 and f is continuous at x = 0, it can easily be veri-
fied that for j e [J;,J,] Ix] <n™®, |yl <n™®, all conditions of Lemma 1

are satisfied, and furthermore, the quantities A], A2, sequence {cm} and
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a
% function g mentioned in that lemma can be chosen in such a way that they
are independent of j, x, y, as long as j € [j],jzj, |x] < n % and

<5 i

o ly] < n"®. Therefore we obtain

\- = -

2 Pos (550 £50) = (0(65) -0(a)) (1 +0(1)) +o(n™ /%), (4.9)
(S - . . . .

o Here o(1) and o(n ]/2) are uniform for j € [J],Jz], and
e c= (g, - (g4, - [(3-1 +(n-j- - x(n-2) -l .

N a5= (g5~ (g5%e5,p)/n - [(3 )U]Ej (n-J 1)u2€j+]]/n A(n-23)/nins_ ", (4.10)
S

N

o = - -1

;: bJ a; + (gjﬂ gj)nsn . (4.11)
'
o,

ik Since f(0) > 0 and f is continuous at 0, it follows easily by an inequality
'_’.:: by Bennett (1962) that for any « € (0,1/2):

gt
o P(|gjl >n %) = o(n-]) (4.12)
%

;:f uniformly for j € [j],jz], as n » «, On the other hand, denoting by FJ.
7o

;.'.'_ the distribution function of £y we have
b~

‘ P(g. -g.>n'2°‘ [e:]<n™®)

A NEd RS J

"
- ] —ayy ! . -2 n-j

= (P(le;f<n™)) L= (o) (T +0(1))ne%/(1 - ) 1" YdF (%)
L J ©x|<n”® J

" <

IN < exp{—Z']f(O)(l +o(1))n]'2°‘} = o(n']) (4.13)
2 :

PN

- uniformly for j = 1,...,n, as n » o,

TN

- Now we proceed to make estimates on Mixe Moy and Srz]. For this purpose
introduce the following notations:

u = BTy <o)

e U2 = E(YII(Y]>O))

'

P

e

L

'—l
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% We have y:
. ) 2 . 2
| S2 = (3-1)o5, + (n-3-Dog,
- ) -1 2 22
i = qn(] +o(1))(q "(u<0u dF(u) - q u]/(l +o(1)>
1 ht
¢ s (1-q)n(1+o<1))((1-q)“f uPdF(u) - (1- q)72ud) (1+0(1) b
,( Uio :
eSS I SR by \ 2 :
= n(EY7-a ug- (1-a) 7w ) (1+0(1)) = nog (1 +0(1)) (4.14)
.‘
{ where y
, 2 2 -1 2
00=0-q( q)” ((1-) qu2)>0. _
N Choose o € (1/4,1/2). When [x]| < n™®, we have >
B ™
{ 4
Ny X _ X . t
Y Hq. = udF(u)/F(x) = "uq +0(n 20‘))(q+ dF) 1 y
A 1x -
b - 0
3 _ _ X _ .
& =g Mu,-q7tu [ dF+o(ny . (4.15)
. 1 U J
Pl
- Similarily, when |x] < n"® and |y-x| < n'2°‘, we have
& i -1 (X 24 b
- gy = (1-0) (up+(1-q) uzjo dF +0(n™%%)). (4.16)
e
N Writing j = [qn] + tj’ for j e [3;»3,], and » = [(1-4a)y, -quz]/(QU -q)), )
. from (4.10), (4.12)-(4.16), after some simplifications we get .
=1 =
aj = og AT +uf(0)) g5+ (20 -w)ty/n}(1+0(1)). (4.17)
;‘ Here o(1) + 0 uniformly for j € [j],jz]. For bj we get exactly the same A
expression as (4.17) — of course, with a different o(1). From (4.10), .
) _ _ =1~ _ \
: (4.11) and (4.14), we have bj - a5 = n(gjﬂ 'gj)/sn = q ./n(gjﬂ gj)
" 1+0(1)). Hence, from (4.9), we obtain
"
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(65> £547) = Jﬁoa‘<aj+]-aj)¢(?ﬁo5‘ (6 +ori0)e +(zx.-w)tj/n)(1+-o(1»)

+ o(nV?), (4.18)

-1/2

where o(n ) is uniform for j e [j],jz], and ¢(u) = /75-]exp(-u2/2).

Now we show that

(85, - £51¢5 = a) = (nf(0)) (1 +0(1) (4.19)

uniformly for j e [y, J,] and |af < n% as n -« In fact,

-2/3
Hegn mgylegme) = (Em +fa+n 2/3)( e %)n E

J,. +J

"

(4.20)

n en’

Since Ja| < n™ and n - § = n(1-0a) (1 +0(1)) uniformly for j e [, J,],
we have
[(1-F(x))/(l-r(a))]n_J =[1-(1-q)‘]f(tJ)(x-a)(l+o(1))]n-J
= exp{-nf(0)(x -a)(1+0(1))} (4.21)
uniformly for x € [a, a-+n-2/3] and j e [j], jz]. If x>a + n'2/3, the
same argument gives
-j-1 -j-1
[(1-HxD/(1-HaD]nJ 5[(1-Fm+n'03»/(1-HaD]HJ
= exp(-n'/>£(0)(1+0(1)) = o(n™) (4.22)
-2/3

uniformly for x >a + n and j € [j], jz]. From (4.20)-(4.22) and notice
the fact that {T[l- F(x)]dx » = (because E|Y]| <»), (4.19) follows. From

(4.19) we obtain
Prj = EPns(Es0 Ega) = (cof(owﬁ)"u(fn og (1 + uf(0))e; +(22 = w)t /) (1 +o(1))>

o(n"12), (4.23)
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b ;"
i :'-
irite o2 = L 2 . . 2
rite oy = var(I(Y]<O)) =q-q° =g(1-qg). Fix x and consider ¢
)
E P(f(O)o;‘./ﬁ(gj -tj/(nf(o))) < x) s;
4 '.i
- (] ]{ 1(¥; < (t; + o)/ (nf(0))) - ((tj+o]xﬁ1)/(nf(0))>} ;
k >3- nF((tj+o]x/ﬁ)/(nf(0)))) N
t =
L n I'e
= ( ZiI(Y <(tJ+c x/ﬁ)/(nf 0)) - F((t +0 x/ﬁ\/(nf 0))>?/(/r-\c]) =
3 B \
h
t > x(1+0(1)) +o(tjn'”2)). (4.24) S
z ,.
Since tj /Vn = 0(1) uniformly for j € [j],jz], the last expression of (4.24) L
tends to &(x) uniformly for j € [j],jz], as n » ». Denote by Z a random :':,
variable with distribution ¢. From (4.23), (4.24), and Helly's theorem, \
we get
Py = (ogf(0)R)” E¢>([o]<l+mf(0)) 102+ (1+228(0 )tj)/(f(o)/ﬁao)]) B
.
+ o(n V2, (4.25)
! where o(n”1/2) is uniform for j € [3;»3,]. From (4.25) we obtain v
' . X
J
- 2 [Mvn] 1+wf (0) . i
; lim 1im  § p. = (cof(o))“ lim lim e ) £10) )z+‘;2:{é§’)_1-)_1_ 3
h Moo N j=j-| J My N ’i=-[M/_] 90 0 /n’m '.'
= &
; ;
! _ e o (1f(0) (1+2Af(0)) )
' = (oof(O)) [ E¢(——fm———z+ )du 3
’ N
‘ (rrte) ;
1+uf(0) N
_ - 1 L1 f (0) S
E = (2no,f(0)) ! ” exp{ 1 FT0) O ) }dZdu .
a 2
, = (1+2Af(0)) + (1-6)/(1-6+6f(0)). (4.26) ..':
™
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Finally, from (4.7) and (4.26) we get (2.4). The theorem is proved. E;
3
3 :. ]
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